Lie Group Methods *
نویسنده
چکیده
Definition 1.1. [Ol] An m-dimensional manifold M is a topological space covered by a collection of open subsets Wα ⊂M (coordinate charts) and maps Xα : Wα → Vα ⊂ R one-to-one and onto, where Vα is an open, connected subset of R. (Wα,Xα) define coordinates on M. M is a smooth manifold if the maps Xαβ = Xβ ◦X−1 α , are smooth where they are defined, i.e. on Xα(Wα ∩Wβ) to Xβ(Wα ∩Wβ). Example 1.2. R is a m-dimensional manifold covered with a single chart. Example 1.3. The unit sphere Sm−1 := {x ∈ R | ∑m i=1 x 2 i = 1} is a m−1dimensional manifold covered with two charts obtained by omitting the north and south poles respectively. The coordinate maps are obtained considering the stereographic projection from the north and south pole respectively.
منابع مشابه
Lie symmetry analysis for Kawahara-KdV equations
We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.
متن کاملFiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کاملRepresentations of Double Coset Lie Hypergroups
We study the double cosets of a Lie group by a compact Lie subgroup. We show that a Weil formula holds for double coset Lie hypergroups and show that certain representations of the Lie group lift to representations of the double coset Lie hypergroup. We characterize smooth (analytic) vectors of these lifted representations.
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کامل